
Self-Describing Bus (SDB)
Specification for Logic Cores – Version 1.1 (+

changes)

Alessandro Rubini (Consultant for CERN)
Wesley Terpstra (GSI),

Manohar Vanga (CERN, BE/CO/HT)

April 11th 2013

Contents

1 Introduction 3

1.1 History and Rationale . 3

1.2 Scope of This Specification . 4

1.3 Interrupts . 5

1.4 The Overall System Structure 6

1.5 Current Implementations . 8

2 SDB Header Material 8

3 Linux Kernel Model 12

3.1 Wb-core and Enumeration . 12

3.2 Accessing the Bus . 14

3.3 Autoprobing Device Drivers 15

1

3.4 Storage Support . 15

4 SDB Structures 16

4.1 Definitions . 16

4.2 SDB Product Structure . 18

4.3 SDB Component Structure . 21

4.4 SDB Records . 22

4.4.1 SDB Interconnect . 23

4.4.2 Device Record . 25

4.4.3 Bridge Record . 27

4.4.4 Integration Record . 28

4.4.5 Repository-Url Record 29

4.4.6 Synthesis Record . 30

5 Simple Real-World Examples 32

5.1 Simple Binary Data . 32

5.2 Parsing the Data . 32

5.3 A More Structured Device . 33

5.4 Endianness Problems . 34

5.5 References . 35

List of Tables

1 SDB Product Structure (40 bytes, at offset 24) 18

2 SDB Record Types . 20

3 SDB Component Structure (56 bytes, at offset 8) 21

2

4 SDB Interconnect Record (64 bytes, type 0x00) 23

5 SDB Bus Types . 24

6 SDB Device Record (64 bytes, type 0x01) 25

7 SDB Device Record (64 bytes, type 0x02) 27

8 SDB Integrator Record (64 bytes, type 0x80) 28

9 SDB Repository-Url Record (64 bytes, type 0x81) 29

10 SDB Synthesis Record (64 bytes, type 0x82) 30

3

Bugs

Even though the project already passed the 1.0 milestone, there are still some
things that ought to be changed or added:

• We should clarify that addresses in nested buses are relative to the
sub-bus;

• The description of the record type should get a more prominent place
than the current description in the product structure;

• We need a policy for designers adding class etc, and it must be de-
scribed;

• A reference implementation exists, but it is not described here.

Versioning

The SDB specification is the work of people discussing in the fpga-config-space
mailing list, using the IETF approach of “rough consensus and running code”.
Everybody can join and contribute.

The mailing list is part of the project with the same name on ohwr.org. The
direct link is http://www.ohwr.org/projects/fpga-config-space .

This document is the official 1.1 version of the specification. It describes
version 1 of the data structures. All future compatible releases of this
specification will be blessed 1.x, for some ever-increasing version of x. A
compatible specification is one that explains better some unclear points (see
“Bugs” above) or that adds record types that may be identified (and possibly
ignored) by previous parsers.

If we ever need to release version 2 (or further) of the SDB structures, the
specification version will be raised accordingly. New specifications will con-
tinue to describe older versions of the data structures, and parsers running
on host computers will be required to still parse the older versions. (No such
requirement is there for soft-cores, because the parser code is synthesized
together with the data structures).

4

1 Introduction

This document describes a specification for a series of self description struc-
tures that can be used to provide metadata about logic blocks. This metadata
should be provided by the logic cores, like PCI or USB description records
do, so device drivers and other software can automatically discover the blocks
and configure them at runtime.

1.1 History and Rationale

The idea of a self-description for a bus appeared while working onWhite Rab-
bit and related projects that make massive use of FPGA devices. Separately
and concurrently, both the CERN and the GSI working groups identified the
need for some way to self-detect the contents of a specific logic device after
it is programmed.

We envisioned that if the internal FPGA bus could enumerate its own con-
tent, we would get the following advantages:

• Run-time validation of FPGA binary images;

• Easy matching of software and gateware;

• Automatic handling of several binaries with the same software;

• Feasibility of tools similar to lspci and lsusb;

• Automatic loading of kernel drivers on the host computer;

• Automatic setup of low-level drivers within soft cores;

• Better decoupling of gateware and software development.

As usual in engineering, we wanted a system that was as simple as possible,
yet open to future extensions without introducing compatibility issues. While
our internal bus isWishbone, we designed the structures to be generic so other
bus implementations may use them.

We are aware of the AMBA (PrimeCell) cell-id standard, but we think it
is seriously under-designed: the idea is sound, but a single cell-ID field is

5

not enough if we want to make sense of the whole bus. We think current
hardware and software resources allow a richer description of logic blocks.

We are also aware of the PCI and USB data structures, but they are unsuit-
able for an FPGA, either. First of all, they assume devices are enumerated
by other means whereas we need to be able to scan a flat address space; then,
their vendor ID space is not wide enough to allow small developers to easily
participate.

This specification, thus, uses 64 bits for the vendor ID, to prevent scarcity.
The vendor space is split in two parts, and all users are free to bless their own
vendor number and start designing using these data structures, provided the
most-significant vendor-id bit is set.

We acknowledge the usefulness of a central vendor registry, so the lower half
of the vendor-ID space is reserved for numbers that are officially assigned
and published. The vendor registry, however, is not part of this specification,
which just lists the first few vendor-ID values that have already been used.

All multi-byte values are stored in big endian order. We need a well-defined
endianness to allow generic scanning of the target bus; we picked big-endian
because most embedded devices are big endian and because it is the format
usually chosen by existing standards documents.

All data structures are 64 byte in size and they are all similar in their internal
layout; the last byte in the 64-byte slot identifies the type of each structure, to
allow very simple parsing code and easy extension to new types of structures.
The size is a power of two in order to avoid multiplication and division in
calculation of sizes, as the driver may reside in a very simple soft-core.

1.2 Scope of This Specification

This specification documents the format used by CERN and GSI. However,
everyone is welcome to use the data structures defined in this specification
(or customized derivatives) in their own work.

Parts of this document are written in the language of a formal specification
because we need clear and sharp rules in order to make different implementa-
tions interoperate. We are sticking to those rules in our own implementations,
both in gateware and in associated software.

6

Everybody is free to choose a vendor-ID and start coding right now; we
suggest to pick a random 64 bit number and set the most significant bit (as
an alternative, you can paste the bit “1” in front of a random 63 bit number).

If you want to implement your own self-description ROM, because you like
this idea but want to do it differently, please change the magic number, so
to avoid headaches if both bus implementation are instantiated within the
same host computer or network.

1.3 Interrupts

This version of SDB doesn’t describe interrupts. Lack of interrupt description
is a design choice.

SDB was born as a description of address spaces. Access to address spaces is
usually done through bus signals, according to the bus specification: signal
lines, protocols, timings. Interrupts strictly-speaking are not part of the bus:
they are a sort of a “secondary” bus, where only one signal line connects one
core to the “interrupt controller” core. The same applies to the out-of-band
DMA channels used in some designs, where two devices are connected via a
path not part of the normal bus interconnect fabric.

Neither of these is strictly in the scope of SDB; but especially as far as inter-
rupts are concerned, we really think FPGA designs should be converted to
the concept of MSI interrupts. Message-signalled interrupts have a number of
advantages over legacy interrupts, and they don’t even need any description
besides what SDB already offers.

A more complete discussion of this is in the wiki page of the project:

http://www.ohwr.org/projects/fpga-config-space/wiki.

On the other hand, it may make sense to define SDB structures to describe
this special wiring, when it exists, to help existing “legacy” projects to benefit
from SDB and avoid doping the software source code with static informa-
tion about device wiring. Thus, it may happen that future releases of this
specification include description of legacy interrupts.

7

1.4 The Overall System Structure

The bus described by the structures defined herein is set up as a flat address
space. Our initial target is the Wishbone bus, as used in our own FPGA
projects, but the overall situation is pretty general and can be applied to any
bus or even a storage system for quasi-static information in flash memory

To keep variety to a minimum, this standard defines the concept of product,
which is anything that has been done, and thus has its own identifiers, name,
version and date. This includes some of the meta-information structures, for
example a record of the final build of the FPGA binary.

Every product that lives in some address range is called a component ; as such
it specifies its first and last address, both as 64 bit numbers.

Within the bus memory area, the address space available to bus masters is
usually decoded into several blocks using the high address bits, so that the
space is divided into address areas. Usually the areas are sized as powers of
two, but this is not mandatory – some designers may use individual address
lines to select blocks, to easily get a sparsely populated address space. The
designer of the address demultiplexer (the interconnect block) is expected
to describe the logic blocks living behind the interconnect, as well as the
interconnect itself. Thus, the interconnect is a component (so that it owns
an address range), and the associated SDB record is the first one of an array
of structures; the other records on the array defines the components that
are connected downstream of this multiplexer and optionally more abstract
products.

Some of the blocks within the data space of an interconnect component
can in turn be bridges to other interconnect components. Thus, the bridge
component states the address where further self-description structures are to
be found. This allows nesting at arbitrary levels (too deep nesting is not a
good practice, but this specification is not limiting the designer’s ingenuity).

Only the bus designer knows where the outer-level data structure is to be
found, and such information is expected to be known by the “bus driver”
software package. For example, a soft-core scanning its own bus will know
where to start from, because it is part of the same overall design; a PCI driver
must know how to access internal bus memory from a PCI memory window,
so it can also know where the SDB entry point is stored; an Etherbone bus
master will comply to its own packet-format standard, so it can as well know
where to start enumerating the remote bus from.

8

We can therefore define a number of terms to build the self-description frame-
work. What follows is the list of data structures and sub-structures defined
by SDB. Each structure represents a specific abstraction: the name of the
structure matches the SDB definition of the respective term:

Product
Every structure includes product fields, i.e. the vendor and device iden-
tifiers, version and date, and an UTF-8 name.

Component
A component is a product with an associated address range. Its struc-
ture lists the first and last valid addresses within the encompassing
address space and includes a product structure. The addresses are rel-
ative to the hosting interconnect.

Interconnect
The interconnect is a component representing an address demultiplexer.
The associated data structure is the first in an array of product descrip-
tions; its specific fields are magic number, bus type, version and the
number of structures in the array.

Device
The device component identifies a peripheral block, with its class, ABI
version and bus-specific flags.

Bridge
The bridge component marks a memory area leading to a lower-level
address demultiplexer (i.e. an interconnect). Its data structure declares
the address where the self-description for the sub-bus is to be found,
relative to the hosting interconnect.

Integration
The optional integration product describes an aggregate bus. It is a
product record, not a component, in that it has no associated address
range. This meta-information item can be used by a vendor to describe
its particular combination of devices, interconnect, and address layout.
For example, if an expansion card uses a number of stock devices com-
bined with a stock interconnect, its driver can nonetheless recognize
the aggregate device by the integration record.

The other term we need to to define is controller, which is listed separately
because it doesn’t match any data structure:

9

Controller
The controller is a software abstraction, used in the host computer
driving the bus (if any). The controller defines the methods to access
its own bus and knows where the outer SDB array is found. There is no
controller concept for soft-cores that self-scan their own address space.

1.5 Current Implementations

The self-description mechanisms described here are already successfully used
by the Etherbone project, whereas FPGA devices equipped with an Ethernet
port allow external hosts to be bus masters in the internal Wishbone bus.
The host computer can completely describe and access the remote bus(es)
using the structures described here; by identifying each instantiated device it
can also drive the remote peripherals without prior knowledge of the specific
FPGA binary it is talking to.

The same mechanism is already part of the White Rabbit PTP Core and
the outer-level FPGA designs that are being used in our synchronized I/O
boards.

2 SDB Header Material

This section includes the whole header file that defines the data structures.
The header itself is included in the source code that accompanies this speci-
fication.

All fields and bits are explained in detail in later sections of this specification,
but we prefer to show the meat straight at the beginning, before being lost
in acronyms and gory details.

This header uses the Linux kernel coding style (e.g.: no typedef is used),
but you can write it differently if you prefer – some of us already did – as
long as the binary representation of the data matches this one.

/*

* This is the official version 1.1 of sdb.h

*/

#ifndef __SDB_H__

#define __SDB_H__

10

#ifdef __KERNEL__

#include <linux/types.h>

#else

#include <stdint.h>

#endif

/*

* All structures are 64 bytes long and are expected

* to live in an array, one for each interconnect.

* Most fields of the structures are shared among the

* various types, and most-specific fields are at the

* beginning (for alignment reasons, and to keep the

* magic number at the head of the interconnect record

*/

/* Product, 40 bytes at offset 24, 8-byte aligned

*

* device_id is vendor-assigned; version is device-specific,

* date is hex (e.g 0x20120501), name is UTF-8, blank-filled

* and not terminated with a 0 byte.

*/

struct sdb_product {

uint64_t vendor_id; /* 0x18..0x1f */

uint32_t device_id; /* 0x20..0x23 */

uint32_t version; /* 0x24..0x27 */

uint32_t date; /* 0x28..0x2b */

uint8_t name[19]; /* 0x2c..0x3e */

uint8_t record_type; /* 0x3f */

};

/*

* Component, 56 bytes at offset 8, 8-byte aligned

*

* The address range is first to last, inclusive

* (for example 0x100000 - 0x10ffff)

*/

struct sdb_component {

uint64_t addr_first; /* 0x08..0x0f */

uint64_t addr_last; /* 0x10..0x17 */

struct sdb_product product; /* 0x18..0x3f */

};

/* Type of the SDB record */

enum sdb_record_type {

sdb_type_interconnect = 0x00,

sdb_type_device = 0x01,

sdb_type_bridge = 0x02,

sdb_type_integration = 0x80,

sdb_type_repo_url = 0x81,

11

sdb_type_synthesis = 0x82,

sdb_type_empty = 0xFF,

};

/* Type 0: interconnect (first of the array)

*

* sdb_records is the length of the table including this first

* record, version is 1. The bus type is enumerated later.

*/

#define SDB_MAGIC 0x5344422d /* "SDB-" */

struct sdb_interconnect {

uint32_t sdb_magic; /* 0x00-0x03 */

uint16_t sdb_records; /* 0x04-0x05 */

uint8_t sdb_version; /* 0x06 */

uint8_t sdb_bus_type; /* 0x07 */

struct sdb_component sdb_component; /* 0x08-0x3f */

};

/* Type 1: device

*

* class is 0 for "custom device", other values are

* to be standardized; ABI version is for the driver,

* bus-specific bits are defined by each bus (see below)

*/

struct sdb_device {

uint16_t abi_class; /* 0x00-0x01 */

uint8_t abi_ver_major; /* 0x02 */

uint8_t abi_ver_minor; /* 0x03 */

uint32_t bus_specific; /* 0x04-0x07 */

struct sdb_component sdb_component; /* 0x08-0x3f */

};

/* Type 2: bridge

*

* child is the address of the nested SDB table

*/

struct sdb_bridge {

uint64_t sdb_child; /* 0x00-0x07 */

struct sdb_component sdb_component; /* 0x08-0x3f */

};

/* Type 0x80: integration

*

* all types with bit 7 set are meta-information, so

* software can ignore the types it doesn’t know. Here we

* just provide product information for an aggregate device

*/

struct sdb_integration {

uint8_t reserved[24]; /* 0x00-0x17 */

12

struct sdb_product product; /* 0x08-0x3f */

};

/* Type 0x81: Top module repository url

*

* again, an informative field that software can ignore

*/

struct sdb_repo_url {

uint8_t repo_url[63]; /* 0x00-0x3e */

uint8_t record_type; /* 0x3f */

};

/* Type 0x82: Synthesis tool information

*

* this informative record

*/

struct sdb_synthesis {

uint8_t syn_name[16]; /* 0x00-0x0f */

uint8_t commit_id[16]; /* 0x10-0x1f */

uint8_t tool_name[8]; /* 0x20-0x27 */

uint32_t tool_version; /* 0x28-0x2b */

uint32_t date; /* 0x2c-0x2f */

uint8_t user_name[15]; /* 0x30-0x3e */

uint8_t record_type; /* 0x3f */

};

/* Type 0xff: empty

*

* this allows keeping empty slots during development,

* so they can be filled later with minimal efforts and

* no misleading description is ever shipped -- hopefully.

* It can also be used to pad a table to a desired length.

*/

struct sdb_empty {

uint8_t reserved[63]; /* 0x00-0x3e */

uint8_t record_type; /* 0x3f */

};

/* The type of bus, for bus-specific flags */

enum sdb_bus_type {

sdb_wishbone = 0x00,

sdb_data = 0x01,

};

#define SDB_WB_WIDTH_MASK 0x0f

#define SDB_WB_ACCESS8 0x01

#define SDB_WB_ACCESS16 0x02

#define SDB_WB_ACCESS32 0x04

#define SDB_WB_ACCESS64 0x08

13

#define SDB_WB_LITTLE_ENDIAN 0x80

#define SDB_DATA_READ 0x04

#define SDB_DATA_WRITE 0x02

#define SDB_DATA_EXEC 0x01

#endif /* __SDB_H__ */

3 Linux Kernel Model

This sections describes the plans for integration of SDB in the Linux Kernel
environment. The uninterested reader can skip over to the next chapter
where we get back to the actual structures.

In our plans this self-description standard is tightly related with Linux device
drivers, because most of our FPGA devices are going to be driven by a
GNU/Linux host, whether over PCI, VME, or Etherbone.

Devices may appear and disappear during system lifetime: this happens when
you load and remove the PCI driver (or instantiate an Etherbone peer), but
also when you reprogram the FPGA with a different binary. Another issue
is that the device drivers may either be concerned with the FPGA binary as
a whole or be interested in each and every individual logic block; thus, the
same GPIO logic block can be either driven by the host or ignored by it –
because is is directly used by the soft-core within the synthesised binary.

3.1 Wb-core and Enumeration

For the time being, let’s call the bus Wishbone. This is definitely the first
implementation we are using, and some specifics of byte-wide access need to
be dealt with; so let’s ignore generality in this description for the sake of
completeness in a real use case (which, however, is still under development
as I write this).

The bus management code is part of a kernel module called wb-core. The
core includes bus scanning and enumeration logic, as well as the match func-
tion that mates devices and drivers, like every other Linux bus does.

When some piece of code detects a new bus, it registers the new bus instance,
claiming to be the associated controller. In addition, the controller specifies

14

the address where SDB records live. The bus and controller can be removed
at any time, like you can remove a USB hub or a Compact-PCI bridge.

Such bus creation and removal typically happens when the PCI driver finds
its own FPGA carrier board, or when the user notifies the system about a
network address where the Etherbone protocol is supported.

The wishbone core starts enumerating the bus, using controller-provided op-
erations for the individual I/O transactions; such enumeration begins at the
known address that the controller declared. The controller implements such
transactions in the proper way, by directly reading or writing PCI or VME
memory, or by sending Etherbone frames, or whatever.

The first SDB record must be an interconnect record: thus, the first bytes at
the SDB address are the magic number. If the magic number is not found,
enumeration is aborted.

The interconnect record is the first in an array of SDB structures, and it
declares how long the array is; each device then declares its own address
range. SDB scanning is designed to never generate invalid memory accesses,
but the first address must be externally provided, and the controller is re-
sponsible for providing a valid address for its own bus; then, non-SDB buses
are handled by simply not finding the magic number (in this case we assume
the bus designer willingly placed another value at that address, because the
host controller is expected to be SDB-aware).

During enumeration, all SDB structures are scanned, and the core registers
a device for each and any of those items. If a driver exists for the associated
device, the kernel calls its own probe function, in the usual way. As an
alternative, the driver may appear at a later time, or can be automatically
loaded when the device is detected. Again, these operations follow sound
Linux tradition: they are renown and safe.

As a special case, the probe function for a Wishbone driver can tell the
controller to stop scanning the bus, by returning a specific non-zero value.
When this happens, the core stops enumerating the bus – but the driver itself
is allowed to register further devices or ask to scan sub-buses.

This feature is designed to allow multi-device blocks to be handled as a
whole. If the FPGA design is a single complex object, with its own CPU
inside and internally-driven peripherals, the Linux driver for the associated
interconnect or integration record will get ownership of everything. This
prevents the Linux host to probe for generic GPIO or UART drivers for the

15

internal cores, even if the designer of the outer logic block used generic cores
internally.

Whenever this multi-device logic core is embedded in an outer bus, where
host-accessible drivers live, such request to stop scanning only affects internal
sub-devices; sibling cores are still normally enumerated. Finally, if the driver
for the complex core wants to export some inner block to a host device driver
(e.g., an internal GPIO block), it can still register some internal SDB records
and keep other ones private, according to internal policies.

3.2 Accessing the Bus

After the controller registered its own self-described bus and wb-core is done
scanning and probing drivers, applications need a way to access those re-
sources.

Whenever a driver has acquired ownership of a device, it also takes care of
user access. Whether it registered GPIO pins, a tty device or a network
interface, device access is not a problem of wb-core.

To allow generic user-space access to the bus, wb-core offers a char device
interface, compatible with the API already in use within GSI. The char
device is not created by default, but a sysfs attribute for the bus allows
to instantiate it, with a user-provided name. With another sysfs attribute,
user space can tell the core whether it wants complete control of the bus
or only of those devices that are not yet driven, the latter behavior being
the default. A wb-core system-wide parameter can be used to always create
the char device, and even always granting whole-bus access without scanning
and registering devices.

Unless it owns the whole bus, the char device returns EBUSY for all I/O
operations that fall in an address space that belongs to a device driver. This
is consistent with the user-space interfaces of I2C-char and libgpio; it is a
good policy to prevent unexpected race conditions or other inconsistencies.

When user-space requests access to the whole bus, this forces unbinding of
all the device drivers that are active over the bus. This is a shortcut over
individually unbinding all drivers using sysfs device attributes. The system
also supports a user-access mode by which the whole bus is available to
user space without passing through the unbinding phase; this is meant as a
debugging tool and must be used with great care.

16

3.3 Autoprobing Device Drivers

In order to allow automatic loading of device drivers, not unlike what already
is in place for PCI, USB and other widespread bus interfaces, we plan to add
modalias support for wishbone and, later, for other SDB bus versions.

3.4 Storage Support

Another use for SDB is a simple yet effective flash storage organization.
SDB records can be used as a very simple file-system-like interface that can
be parsed by a soft-core CPU with very little overhead. Use cases for such a
storage file-system are almost read-only, but not completely: sometimes users
need to update FPGA binary images or some calibration parameters. Such
use doesn’t require a complex filesystem with wear-levelling capabilities.

In our search for the state of the art, we didn’t find small and simple filesys-
tems that allow in-place replacement of files. We thus used SDB for that. In
SDBFS, a file within a storage medium is just like a peripheral device within
an address space. It can be read and written, but not moved or resized.

Thus, SDB defines storage as a bus type, where each record describes a file,
with both a name and a numeric device or class identifier. Within SDB,
bridge devices lend themselves to be used to represent directories, if needed,
without any semantic change. This approach allows serious memory savings
in soft-core programs that must both find whether they have a diagnostic
channels in the form of a UART and whether they have been provided a
configuration file, or other board-dependent parameters.

Another special use of this filesystem is for FMC flash devices: the standard
mandates that the leading part of the flash includes IPMI information for
the card; the driver for the carrier board is thus able to scan the trailing
part of the device for the SDB magic and then register a filesystem that only
spans the needed part of the flash, as defined at manufacture time (or by
device-specific software).

A user-space program creates the SDB filesystem as an image file, it writes
it using normal char-device MTD operations or other tools to move binary
data. The filesystem can then be accessed on the storage medium by either
user code or kernel code. Or by the microcontroller that lives inside the
FPGA.

17

The current libsdbfs can be built for either user-space, kernel-space or free-
standing environments, and it costs around 1kB of compiled code on micro-
controllers – though lacking support for subdirectories at this point.

4 SDB Structures

This chapter defines the structures that are to be embedded in the address
space of the target bus. The words shall, must, should, may, can have
the usual normative meaning when used in bold face.

4.1 Definitions

SDB Structure
A 64-byte memory area, located within the bus being described at a
known address. The structure must bit 64-byte aligned and it must
be readable with 32-bit I/O transactions. The bus may allow 64-bit,
16-bit and 8-bit access to the structure. Code reading the structure
should use 32-bit transfers, and can use different sizes only when
aware of the specifics of the bus.

SDB Record
A synonym for SDB structure.

SDB Array or SDB Table
An in-memory array of SDB records. The records must be contiguous
with no intervening holes, and the table must be aligned at a 64-byte
boundary. The first SDB structure in the array must be an intercon-
nect record (for this reason, you must verify the magic number of the
array before accessing any other location in the array.

Record Type
The last byte of every SDB structure (offset 0x3f) represents its type.
When reading any SDB structure, unless it is the first in an array,
softwaremust check the record type before making sense of other fields.
Designers may extend this specification with new record types, and
software must ignore the structures whose type is not known to it.

SDB Product
A data structure hosted within some SDB records. Most currently
defined record types are products.

18

SDB Component
A data structure hosted within some SDB records. A component in-
cludes a product structure and defines an address range.

The following sections define the details of each structure.

19

4.2 SDB Product Structure

The product is embedded in most currently-defined data structures. All
multi-byte fields must be stored in big-endian byte order.

0x30
0x20
0x10
0x00

....vendor_id....

device_id version ..date.. ..name..

...............name............... T

Figure 1: The Product Structure

Table 1: SDB Product Structure (40 bytes, at offset 24)

First Last Size Name Value Description
0x18 0x1f 8 vendor id - 64-bit vendor ID
0x20 0x23 4 device id - 32-bit vendor specific device ID
0x24 0x27 4 version - Vendor specific device version

number
0x28 0x2b 4 date - The release date (hex format, eg.

0x20120621)
0x2c 0x3e 19 name - UTF-8 device name, 0x20 filled,

without terminator
0x3f 0x3f 1 record type - Record type byte (see Table 2)

vendor id
This field provides a 64 bit field that identifies the vendor of the device.
The vendor may be a company, an organization or an individual. The
vendor name space is split in two halves; anybody can pick a vendor
ID in the upper half (first bit set), and the 63 bits must be picked as a
random number and should be used consistently in all designs by this
vendor.

A registry is still needed to prevent collisions when using community
developed designs from multiple sources, and one should be set up
as you read this. Entities that want a more official vendor ID than

20

a random number, should apply with the current registry using a
number of their choice. Small numbers should be avoided, preferring
more meaningful strings instead. The registry should reject numbers
smaller than 12 bits, and may reject numbers according to policies
other than collisions with other vendors.

device id
This field specifies a vendor-defined device ID for the device being de-
scribed. Vendors are free to manage these 32 bits as they like, but they
should use the same identifier for fully compatible implementations,
using other fields like version and date to differentiate them.

version
This field specifies a vendor-defined version number for the device. Ven-
dors can use the bits as they wish; for example, this may be used
sequentially or may be derived from the information provided by the
source code management in use for gateware source code.

date
Design/release date of the product. Thismust be either 0 (unspecified)
or a 32-bit hex format number in the format 0xYYYYMMDD. For
example, 0x20120621.

name
The UTF-8 name of the device. As long as the name fits in 19 bytes,
designers are free to choose any string (e.g. both “UART“ or “8250-like
Serial” are valid names). The name should be a single word or an
hyphenated word, avoiding spaces, because it may be used by driver
software to generate pathnames. The string must start at offset 0 and
must be feature value 0x20 (space) in all trailing bytes. It must not
have a trailing zero byte.

record type
Since the product structure is at the end of the SDB record, it includes
the type field. You can access the field from any SDB record, because all
records feature the type byte at offset 0x3f. Software must verify this
field before trying to make sense of any other field in the SDB record.
There is a record type for each different SDB record, and the header file
gives it a symbolic name through enum. The currently defined record
types are listed in Table 2. New record types will most likely enter this
specification over time, without the need to change the SDB version
or overall layout. Users adding new record types must choose a yet-
unused value with the hight bit clear for component records (0-127);

21

users adding new record types of informative value (a product or a
completely different structure) must choose a yet-unused value with
the high bit set (128-255). Local or temporary uses should fall in
the ranges 0x70-0x7f and 0xf0-0xfe. Software should report a warning
when if finds an unknown record type in the range 0x00-0x7f is found;
unknown records in the range 0x80-0xff can be ignored silently.

Table 2: SDB Record Types

Name Value Description
sdb type interconnect 0x00 Interconnect record, first of a table

sdb type device 0x01 Device definition
sdb type bridge 0x02 Bridge to a sub-bus

0x03-0x6f Reserved for future types
0x70-0x7f Local/temporary use

sdb type integration 0x80 Informative: integration structure
sdb type repo url 0x81 Informative: repository location
sdb type synthesis 0x80 Informative: synthesis details

0x83-0xef Reserved for future informative records
0xf0-0xfe Local/temporary use

sdb type empty 0xff Empty record

22

4.3 SDB Component Structure

The SDB Component is described by a data structure that includes product
information. It provides information regarding the address space used by the
component it describes.

0x30
0x20
0x10
0x00

....vendor_id....

device_id version ..date.. ..name..

...............name............... T

...addr_first...

...addr_last...

Figure 2: The Component Structure

Table 3: SDB Component Structure (56 bytes, at offset 8)

First Last Size Name Value Description
0x08 0x0f 8 addr first - The first valid address of the

component
0x10 0x17 8 addr last - The last valid address of the

component
0x18 0x3f 40 product - SDB Product structure (see Ta-

ble 1

addr first
The field must represent the first byte address that belongs to this
component, within the encompassing bus. If the address bits in the
bus are less than 64, the unused most significant bits must be cleared.
(e.g.: 0x0000.0000.0400.0000)

addr last
The field must represent the last byte address that belongs to this
component, within the encompassing bus. If the address bits in the
bus are less than 64, the unused most significant bits must be cleared.
(e.g.: 0x0000.0000.0400.ffff). This field must not represent the first
invalid address (e.g.: 0x0000.0000.0401.0000).

23

product
This is the embedded 40 byte product info structure as described in
Table 1.

4.4 SDB Records

This subsection describes the currently defined SDB records that build an
SDB array. These structures must be instantiated by designers for each logic
block in their design and compiled into a contiguous SDB table, placed at
a known address in the bus memory. Most of these structures include a
component structure or a product structure, and the rules for the respective
fields apply.

24

4.4.1 SDB Interconnect

The interconnect record describes the overall bus or bus subset. Every SDB
table must feature such structure as first one in the array.

0x30
0x20
0x10
0x00

....vendor_id....

device_id version ..date.. ..name..

...............name............... T

...addr_first...

...addr_last...

magic nrec V B

Figure 3: The Interconnect Structure

Table 4: SDB Interconnect Record (64 bytes, type 0x00)

First Last Size Name Value Description
0x00 0x03 4 sdb magic 0x5344422D “SDB-”, used to verify a

table is actually there
0x04 0x05 2 sdb records - Number of records in this

SDB table (including this
one)

0x06 0x06 1 sdb version 1 SDB format version. Cur-
rently 1

0x07 0x07 1 sdb bus type - The bus type for all com-
ponents in the table

0x08 0x3f 56 sdb component - SDB Component struc-
ture (see Table 3

sdb magic
The field must be set to 0x5344422D. If you use a similar data struc-
ture but choose to not fully comply to this standard, you must use a
different magic number.

sdb records
This field specifies the number of records in the table. It must include
this very record in the count, and the whole address range (this number
multiplied by 64 bytes) must be accessible. Note that the array may
include empty records at any position.

25

sdb version
This is the record format version. In the current version of the spec-
ification this is the value 0x01. If software finds an unknown version
number it must abort enumeration.

sdb bus type
This field specifies the bus type. This field is used when decoding the
bus specific information inside a device record (see below). All records
in the array share the same bus type, bus-specific bits in each device
declare the details for data access.

Table 5 lists the currently defined types.

sdb component
An interconnect record describes a component, so it embeds a compo-
nent structure. The type field in the component is 0x00.

Table 5: SDB Bus Types

Name Value Description
WishBone 0x00 Specifies a Wishbone bus type,

as commonly used in FPGAs
Storage 0x01 Specifies use of SDB records as a

simple filesystem

26

4.4.2 Device Record

This record type describes a single device or logic block mapped into the
memory of the bus. In a compliant implementation, one device record should
exist for each device that is connected to the bus. Users may choose to
aggregate a complex device under a single description record. The structure
of the device record is shown below in Table 6.

0x30
0x20
0x10
0x00

....vendor_id....

device_id version ..date.. ..name..

...............name............... T

...addr_first...

...addr_last...

class A a bus-spec

Figure 4: The Device Structure

Table 6: SDB Device Record (64 bytes, type 0x01)

First Last Size Name Value Description
0x00 0x01 2 abi class - The ABI class of the device (0 =

Custom Device)
0x02 0x02 1 abi ver major - The ABI major version
0x03 0x03 1 abi ver minor - The ABI minor version
0x04 0x07 4 bus specific - Bus specific field (flags)
0x08 0x3f 56 sdb component - SDB Component Info structure

abi class
The ABI class, if not 0, tells the kind of standard interface that the
device provides. This allows a single driver to deal with compatible
devices designed by different vendors, not unlikely PCI or USB classes.
Currently, no ABI class is defined. Designers should use 0 here, until
an official SDB class registry exists.

abi ver major
This is the major version number of the ABI class. Standard interfaces
are not compatible between major version changes. If the class is 0,

27

designers can use this field of driver-specific uses. For example, a
driver can be able to deal with a number of similar devices (all with
a different device-ID) and use the ABI fields as a hint to classify the
various devices.

abi ver minor
This is the minor version number of the ABI class. Standard interfaces
are compatible between minor version changes. Again, if the class is 0,
developers can set this field for internal use.

bus specific
This is a 4-byte field that holds bus-specific information, most likely
flags. For current values, please refer to header files.

component
This is a standard component structure (see Table 3). The record type
for a device is 0x01.

28

4.4.3 Bridge Record

A bridge record is used to describe a nested bus within the same address
space. Bus structures with nested interconnects are typical in complex
projects. The structure of the bridge record is shown in Table 7.

0x30
0x20
0x10
0x00

....vendor_id....

device_id version ..date.. ..name..

...............name............... T

...addr_first...

...addr_last...

......child......

Figure 5: The Bridge Structure

Table 7: SDB Device Record (64 bytes, type 0x02)

First Last Size Name Value Description
0x00 0x07 8 sdb child - The relative address of the

nested SDB table
0x08 0x3f 56 sdb component - SDB Component structure

sdb child
This field gives the location of the nested bus’ SDB table. This address
is a relative address with respect to the start of the this address space –
not the nested one. In other words, all addresses in this SDB array are
relative to the same base address; this ensures consistency within each
SDB array and allows the ROM area that describes a sub-interconnect
to be outside the interconnect itself. Designers can thus describe the
internals of legacy logic cores without the need to change them. The
value must point to an SDB array that begins with an interconnect
record. Note: version 1.0 of the specification got this point wrong,
contrary to all existent implementations.

component
An embedded component info structure, where the type is 0x01 See
Table 3.

29

4.4.4 Integration Record

An integration record is a product record (not a component, because it has
no associated address range). The structure provides meta-data about the
aggregate product of the bus or bus subset. For example, consider a man-
ufacturer that takes components from various vendors and combines them
with a standard bus interconnect. This aggregate product can be described
by an SDB integration record, claiming a vendor ID, the release date and the
other product information. The integration record is is described in Table 8.

0x30
0x20
0x10
0x00

....vendor_id....

device_id version ..date.. ..name..

...............name............... T

..............reserved..............

....reserved....

Figure 6: The Integration Structure

Table 8: SDB Integrator Record (64 bytes, type 0x80)

First Last Size Name Value Description
0x00 0x1f 24 reserved - Reserved/unused space
0x18 0x3f 40 product - SDB Product Info structure

reserved
The initial field in this record is unused, because all needed information
is part of the product structure. Users should fill this area with all
bits clear or all bit set.

product
This is the product structure described in Table 1. The record type for
an integration record is 0x80.

30

4.4.5 Repository-Url Record

This record is not a product ; it is laid out as a simple 63-byte string that
reports the URL of the repository used to driver this synthesis. This record
is optional like all other informational structures, but we think it’s useful for
designers to have a standardized way to allow tracing the design. Actually,
this data structure is already implemented in one ADC design.

0x30
0x20
0x10
0x00repo_url..............

..............repo_url..............

..............repo_url..............

..............repo_url............ T

Figure 7: The Repository-Url Structure

Table 9: SDB Repository-Url Record (64 bytes, type 0x81)

First Last Size Name Value Description
0x00 0x3e 63 repo url - Repository for this design
0x3f 0x3f 1 record type 0x81 Type of this record

repo url
This is a string, encoded in UTF-8, with trailing spaces and no termi-
nating 0. It is expected to name the top-level repository used to build
this design, as a git:// or http:// form or anything appropriate for
the revision control system being used.

record type
The record type for this structures is 0x81.

31

4.4.6 Synthesis Record

This record, like the previous one, is not a product. The record is optional,
but it reveals useful to stanrdadize the way to provide information about the
specific synthesis. Not all designers want to provide such detailed informa-
tion, but when they do they should use this format.

Please note that the information in this record is pretty volatile, as it repre-
sents the actual synthesis; if the record is used, developers must be careful to
update (or remove) it when they rebuild the project. All unused fields can
be left empty, but all non-empty fields should be updated with great care or
the initial effort to provided detailed tracking is voided.

0x30
0x20
0x10
0x00syn_name..............

.............commit_id.............

tool_name tool_ver date

..............user_name.......... T

Figure 8: The Synthesis Structure

Table 10: SDB Synthesis Record (64 bytes, type 0x82)

First Last Size Name Value Description
0x00 0x0f 16 syn name - Name of this project/synthesis
0x10 0x1f 16 commit id - Identifier of the build commit
0x20 0x27 8 tool name - Name of the synthesis tool
0x28 0x2b 4 tool version - Version of the synthesis tool
0x2c 0x2f 4 date - Date of synthesis
0x30 0x3e 15 user name - Name of the user who did the

synthesis
0x3f 0x3f 1 record type 0x82 Type of this record

syn name
This is a string, encoded in UTF-8, with trailing spaces and no termi-
nating 0; it should represent a human-readable name for this synthesis.
Like all other fields in this structures, it is meant to be useful for the

32

designers, to help tracking what is currently installed in the various
systems. Thus, this may be a generic name of the project or a more
specific string, according to local needs.

commit id
This field represents the binary identifier of the top-level commit used
to build this gateware image. If the identifier is more than 128 bits
long (e.g., git), the field includes the leading bits. If the commit ID
is numeric (e.g., SVN), the representation is bit-endian binary. For
repositories using non-binary version numbers, the representation is let
to the ingenuity of the developer, to properly convey the informations.
For example, a CVS version like “1.20.1.4” can either be ASCII-encoded
or represented as 4 32-bit big-endian fields. Clearly, the commit id field
raises a “chicken-and-egg” problem: once you commit the change, your
commit identifier changes, maybe in unpredictable ways. Representing
the “previous” commit, and then committing and sdb-only change is a
sensible workaround. The filed should be 0 if not used.

tool name
This is a string, encoded in UTF-8, with trailing spaces and no termi-
nating 0; it represents a human-readable name for the synthesis tool
used to build this very binary gateware file.

tool version
The version of the synthesis tool, in a human-readable way. For exam-
ple, it can be used as two 16-bit fields, but this really depends on how
the specific tool names its versions.

date
The date of synthesis. This must be either 0 (unspecified) or a 32-
bit hex format number in the format 0xYYYYMMDD. For example,
0x20130327.

user name
This is a string, encoded in UTF-8, with trailing spaces and no ter-
minating 0; it states who is the user who built the binary gateware.
This name is expected to be unique among the development group, so
a Unix username or a nickname are good choices that fit the allowed
space of 15 bytes.

record type
The record type for this structures is 0x82.

33

5 Simple Real-World Examples

This section shows the details of the simplest real-world example of an SDB
array, and an overlook of a more structured device.

5.1 Simple Binary Data

The FPGA binary used as the simplest example is the boot image to be
programmed in the SPEC cards (http://www.ohwr.org/projects/spec);
it only includes the syscon device, which allows generic access to the FMC
mezzanine card.

The following binary dump appears at offset 0x100 of the memory window
that maps to the programmable device:

000000 53 44 42 2d 00 02 01 00 00 00 00 00 00 00 00 00 >SDB-............<

000010 00 00 00 00 00 00 01 ff 00 00 00 00 00 00 06 51 >...............Q<

000020 e6 a5 42 c9 00 00 00 02 20 12 05 11 57 42 34 2d >..B..... ...WB4-<

000030 43 72 6f 73 73 62 61 72 2d 47 53 49 20 20 20 00 >Crossbar-GSI .<

000040 00 00 01 01 00 00 00 07 00 00 00 00 00 00 00 00 >................<

000050 00 00 00 00 00 00 00 ff 00 00 00 00 00 00 ce 42 >...............B<

000060 ff 07 fc 47 00 00 00 01 20 12 03 05 57 52 2d 50 >...G.... ...WR-P<

000070 65 72 69 70 68 2d 53 79 73 63 6f 6e 20 20 20 01 >eriph-Syscon .<

5.2 Parsing the Data

This is the suggested parsing sequence for the data shown above. The parsing
code is assumed to know where the data structure is expected to live.

• The parser verifies the magic number 0x5344422D at offset 0.

• The type byte of 0x00 at offset 0x3f confirms this is an interconnect
record.

• The SDB version, at offset 6, confirms this is version 1 and we can
parse it.

• By reading the 16-bit field at position 04-05, we know this is an array
of two items.

34

• The second item is of type device (type 0x01).

What follows is the split-out view of the two structures:

Interconnect:

0x00: 53 44 42 2d (Magic "SDB-")

0x04: 00 02 (Number of records)

0x06: 01 (SDB version)

0x07: 00 (Bus type: wishbone)

0x08: 00 00 00 00 00 00 00 00 (First address)

0x10: 00 00 00 00 00 00 01 ff (Last address)

0x18: 00 00 00 00 00 00 06 51 (Vendor: GSI)

0x20: e6 a5 42 c9 (Device)

0x24: 00 00 00 02 (Version)

0x28: 20 12 05 11 (Date: 11th May 2012)

0x2c: "WB4-Crossbar-GSI " (Name)

0x3f: 00 (Type: interconnect)

Device:

0x00: 00 00 (ABI class)

0x02: 01 (ABI version major)

0x03: 01 (ABI version minor)

0x04: 00 00 00 07 (Bus-specific: BE, 8,16,32 bits)

0x08: 00 00 00 00 00 00 00 00 (First address)

0x10: 00 00 00 00 00 00 00 ff (Last address)

0x18: 00 00 00 00 00 00 ce 42 (Vendor: CERN)

0x20: ff 07 fc 47 (Device)

0x24: 00 00 00 01 (Version)

0x28: 20 12 03 05 (Date: 5th March 2012)

0x2c: "WR-Periph-Syscon " (Name)

0x3f: 01 (Type: device)

The previous dump shows how the vendor identifiers in this case have been
allocated in the globally-assigned space, while device identifiers are pseudo-
random numbers, in charge of the respective vendor.

5.3 A More Structured Device

The following is the output of eb-ls, and Etherbone tool, when run over a
complex White Rabbit device. This output comes from scanning the SDB
structures:

root@scul007:~# eb-ls dev/pcie_wb0

35

BusPath VendorID Product Base(Hex) Description

1 000000000000ce42:66cfeb52 0 WB4-BlockRAM

2 0000000000000651:eef0b198 100000 WB4-Bridge-GSI

2.1 0000000000000651:35aa6b95 100000 GSI_GPIO_32

2.2 0000000000000651:8752bf44 140000 GSI_ECA_UNIT

2.3 0000000000000651:10051981 180000 GSI_TM_LATCH

3 0000000000000651:eef0b198 200000 WB4-Bridge-GSI

3.1 000000000000ce42:66cfeb52 200000 WB4-BlockRAM

3.2 0000000000000651:eef0b198 220000 WB4-Bridge-GSI

3.2.1 000000000000ce42:ab28633a 220000 WR-Mini-NIC

3.2.2 000000000000ce42:650c2d4f 220100 WR-Endpoint

3.2.3 000000000000ce42:65158dc0 220200 WR-Soft-PLL

3.2.4 000000000000ce42:de0d8ced 220300 WR-PPS-Generator

3.2.5 000000000000ce42:ff07fc47 220400 WR-Periph-Syscon

3.2.6 000000000000ce42:e2d13d04 220500 WR-Periph-UART

3.2.7 000000000000ce42:779c5443 220600 WR-Periph-1Wire

3.2.8 000000000000ce42:779c5443 220700 WR-Periph-1Wire

5.4 Endianness Problems

Please note that the host may have some issues reading the binary dumps.
According to how the bridge between the host and FPGA is designed you
may face one of the following situations:

• The host is big-endian (data is always correct).

• The host is little-endian and the bridge is byte-oriented.

• The host is little-endian and the bridge is word-oriented.

If the bridge is byte-oriented, i.e. each and every byte can be independently
addressed as such, then the usual endian conversion rules apply (e.g. you
can memcpy the records to host memory and access fields with endian-aware
code).

If the bridge is word-oriented, with 32-bit words in this example, the be-
haviour is stranger, in a way. After you copied the data to host memory
(whether one byte at a time or not), you’ll find that the bytes are swapped
within each word. This happens because the 32-bit word is transferred as
a whole: the least significant bits remain the the least significant, but they
come from offset 3 in the data structure and are stored at offset 0 in the
little-endian host. If this is your case, you need to byte-swap each 32-bit

36

word before using the structure in a little-endian host. After such swapping,
the data fields live at the correct offsets and must be accessed as big endian.

5.5 References

The Etherbone project, is an early adopter of SDB; it includes also a number
of tools that work with SDB structures (including eb-ls that printed the
table of devices shown above).
The project lives at http://www.ohwr.org/projects/etherbone-core .

The sdbfs work started as a separate project but it is now part of the
fpga-config-space project. It is currently work in progress, but the gens-
dbfs and other non-kernel parts are already being used in production.

37

