Storage and Filesystems



Why a filesystem (1/2)

Usually, the applications needs to save some data

 Parameters
« Calibration
* Possibly log files

Defining magic offsets in flash only lasts so far

« After a few items you get lost
- You can't trade maintainability for laziness

Whatever your storage method, always include a version

« If the "storage version" in the app mismatches, you must reset the storage
« The filesystem layout will change over time
- And the application format new devices anyways

This is different from the typical FS use in bigger systems



Why a filesystem (2/2)

Sometimes, you use a filesystem to exchange data

with the outside world
- mount an SD card to read/write data
- be mounted as USB storage device
- send acquired data through the network to a NAS device

To do this you need a known format

Unfortunately, even the simple (and stupid) FAT may be big
| couldn’t easily find figures, but at least a dozen kB for sure
- Clearly, a single-file approach like "firmware.bin” can be small
but then it is a file, not a filesystem
and the trick can't be applied to SD cards



A look at real filesystems (the Unix way)

A filesystem includes both data and metadata
- And directories obviously

Metadata is stored in the "inode" data structure
* In each filesytem, inodes are humbered

A directory is just a list of names and inode numbers

- Metadata is not directory-specific
» Most users don't care about metadata

A directory is a "special” file, like devices and sockets

* It doesn't feature an associated data area
- The behaviour of open(), read() etc is different

For "normal” files, the inode describes the on-disk mapping
- And any access is then routed to a storage device

Finally, the super-block offers summary information and stats



The Linux way to define a filesystems

The code is laid out as a set of "operations”

struct super operations;

* Mount, umount, ...
« These are the methods to act on the filesystem as a whole

struct 1node operations;

» Mkdir, rmdir, rename, unlink, ...
* It is the set of methods that act on the file-tree

struct file operations;

- Open, release, read, write, mmap, ...
« The set of methods that act on data proper
« And they are different according to the file type



Two simple examples

Minixfs (developed by Andrew Tanenbaum for his Minix OS)

« It was meant to be simple and small, and Unix-like

* 14byte filenames

* 64k inodes

- It shows its age for real systems, and it's too big of uC.

RomFS (introduced in Linux-2.2 for embedded systems)

- Read-only data structures, all files are concatenated
* No support for user and group

* No support for date and time

* No support for physical links.

- Created, as a file, by a user-space tool (""genromis")
 Still maintained and useful in some situations

« It is around 5kB of compiled code



The microcontroller world is simpler

Our environment is smaller, but the basic ideas still apply

What we need for sure:
- A "superblock” (version, magic, size, ...)
- Some "filename" support, and the lenght information
« Mapping from the name to a data area

What we might need, or not:
- Subdirectories
- Creation of new files (i.e. write support for the structure)
« Write support (for the files themselves)

What we definitely do not need:
* Device files and sockets
- Owner, group, time, permission
- Complex enlarge/shrink policies for files



Possible filesystem layouts

Splitting metadata and data
- Metadata could just live within the application binary
- Data must definitely live on external storage
- The application needs to host a copy anyways for initial setup
- This should really be a structure, not a bunch of #define
« And it must include version and magic number in the data.

TLV (type length and value)
» All addresses are relatives
» Subdirectories are easy to add (as a special type)
» A writable file could be allocated to maximum-foreseen-size

Really, TLV is to be considered for a filesystem
- The concept is well khown and appreciated
- The code size to access it is very small
- The main disadvantage is that access is sequential



Another option: SDB

SDB: Self Describing Bus

« This was born as a way do describe memory areas
- To make some order, and add autodetection in FPGA systems

It lends itself very well to make a simple filesystem

- We already used it to that aim, with a barebox patch
- We drafted a sdbfs library, but it's not really complete

All addresses are relative

* This allows the structure to be moved around
* And subdirectories use relative addresses too
You can easily plug pre-filled subdirs to a system

https://ohwr.org/project/sdb.git
https://people.mpi-sws.org/~mvanga/files/papers/sdb-1.1.pdf



