Initcalls

The ugly "setup.c" file

Our current setup.c is as ugly as vendor ones
- It refers to several other drivers (timer, uan, pli, ...)

It must be augmented any time a new driver is added

Worse, such additions may depend on what we configure
- Worse, it may need to depend on what main() does

What we really need, is a simpler approach
« The init function should be part of the driver
« If the driver is not built, its initialization would not be built either
* If the driver is not used, its initialization should not be run

Initcalls, the mechanism

The simple solution is defining a special ELF section

« Every driver defines a structure in that ELF section
» The linker builds an array for us
« The linker script provides the usual nhames for begin and end

Considering the linking mechanism, this is what happens

- Each object files has code and data section
« It may also have an init section

Then, if the linker finds an unresolved symbol in this object file

« It picks the whole file for the final link
- Eventually, it may discard unused sections (--gc-sections)

Two fine points to consider

The compiler discards any unused code and data

« This includes all static functions you don't call
- And also data structures you don't refer to.
* In the blatant case, a warning is reported
"function F defined but not used"
"unused variable V"

Constants known at build time help in this decision
« This is why "if (0)" is good trick
 No warning about "unused code/data” is reported
- But still the function/data is discarded

Additionally, the linker eventually discards unused sections
« This only if "--gc-sections” is requested

Thus, you need to protect precious data

- Use " attribute_ ((used))” in source files
« Use KEEP(section) in the liker script

A quick look at the code

To use inicalls in the hsw2020 repository you need to

 include <init.h>
- declare your init function as device_initcall() or otherwise

typedef int (*initcall_t) (void) ;

#define 1initcall(level,fn) static initcall t initcall ## fn
___attribute ((used, section (".init" level))) = fn

#define core initcall (fn) __initcall("1l®, £fn)

[* .. */

#define late initcall (fn) ___initcall(=7=, fn)

The new setup.c

The role of setup.c, now, is just calling them, in order

for (f = initecall begin; £ < initcall end; f++) {
errors += (*f) ();

And, obviously, we panic if any fails

As a side effect, we alway link in usleep and its init code
« Panic calls usleep

How could we solve the problem?

- If the target CPU is very small, we want to avoid panic()
* ... while keeping the same code structure overall

A problem with init-only drivers

The library-based approach looks best for hsw2020

« We build-test everything, so nothing rusts away
- We may change API (e.g. gpio_setup()) and fix it all

We pick a driver in the final binary only if we need it
- e.d., the SPI driver is built not not used but for a demo

Initcalls are collected and executed only when needed

- usleep _init is only there if we actually run usleep
« We don't turn-on the GPIO block unless we use it

However, we have a problem with init-only drivers
- We are not pulling-in them by actual use
« One of them is the PLL initialization
- The other is TMR32B1 that runs our jiffies variable

Hooks

The simple solution to the above problem is hooks

- Every driver that would not be pulled-on by the linker has a hook symbol
- Some relevant code refers to the hook (main, or setup.c)
- We waste at least one byte per driver, but it may be acceptable

By referring to the hook, you claim your need for the code

if (CONFIG_HAS USB || CONFIG _PLL CPU > 1)
pll hook = 1;

A more structured operating system may be hook-based

« If drivers have standard operations and you open them by name
- You would implement an "import” or "use"” mechanism like this

This is what BertOS was doing, for example

« It is a library-based OS building multiple applications
- Each application requests its own feature-set
* Then, the match at run-time is name-based

A look back at the linker

The role of the linker

The linker resolves symbols to addresses, nhothing more

- Symbols are in the input object files
« And unresolved symbols are in there, too

It uses (or discards) input object files as a whole

It then reassembles ELF sections

* It does so according to the linker script

- Each ELF section is an atomic item
The same-name sections of different input files are merged
Originally, this was only .text, .code and .bss

Eventually, it can discard any sections not referenced to

« This is what happens with "--gc-sections”
- This is usually after "-ffunction-sections’ in the compiler

Discarding unused sections is useful in the uC world
- Similar functions live in the same file, like strcpy() and stremp()

The three ways to build a binary image

Link it all into a big object file

« This is what we were doing at the beginning
« It allows for a platform-independent bigobij.lds intermediate script
» But it shows its limits when the code base increases

| had to abandon this to implement BUG()

Build it all and create a library file (.a)

« This is the current approach
« We build-test all of the code
Well, excluding alternatives for other architectures
- Object files that are not picked are just ighored
If a weak symbol exists, no strong symbol is looked for
 This is useful in a multi-application environment
In our code base, we build several .bin files

Only build what you need to run
* You lack build-test for all code, but you save compiler time
» Useful in big projects that create a single binary
- Examples: Linux, u-boot, barebox, buildroot

BUG()

The need for BUG()

During code development we really need assertions

- We need to verify values are as expected
- Mishaps happens, and they need to be notified

Unfortunately, the assert code takes quite some space

- Besides the conditional, you need to pass __ FILE _etc
* You call printf and panic, with arguments (or __assert)

This can be an issue in hot code paths

- Assert can be conditional (e.g.: CONFIG_ASSERT)
* But sometimes you want to keep the check in production too

So we can use the undefined instruction handler

« One instruction (two bytes in thumb code)
- And an handler that looks up which asertion it was

Implementation in our code base: bug.h

Again, the idea and code hints are from the kernel

asm volatile(

S

" BUG INSTR "\n"
".section .rodata.str, \"aMS\", %progbits,

"2:\t.asciz " # file "\n"
.previous\n"
.section .bug table, \"a\"\n"
.align 2\n"
.word 1b, 2b\n"
.hword " # line ", " # id "\n"

.previous\n") ;

1\11"

Implementation: irg-lpc-debug.c:

printf ("BUG @ 0x%081lx\n", (long)pc);

for (b = bug first; b < bug last; b++)
if (b->pc == pc)
break:
if (b == _ bug last) {
printf ("-- not found in table\n");
return 0;
}

printf ("ID %i %s:%i\n", b->id, b->file, b->line);

