Kernel data structures

Kernel data structures

The Linux Kernel is a known source of best practices

« It is self-contained, as it can't rely on libc
« It's a complex project that would collapse from oversmartness
« It has a lot of data to handle, and problems repeat overall

Rob Pike's rules of programming (shortened):
* Rule 3. Fancy algorithms are slow when n is small, and n is usually small.
* Rule 4. Use simple algorithms as well as simple data structures.
- Rule 5. Data structures, not algorithms, are central to programming.

Obviously, the kernel uses linked lists in several places

Obviously, the kernel hosts a number of sorted data

Lists are the most basic data structures

Everybody is implementing lists all the time

- This is a trivial example, that reverses stdin lines to stdout

struct str item { char str[l6]; struct str item *next; 1};
#define list insert (h, new) \

({ (new) ->next = (h); (h) = (new);})
#define list extract(h) \
({struct int item *res = (h); if (h) (h)=(h) ->next; res;})

while (fgets(line, 16, stdin)) {
item = malloc(sizeof (*item)) ;
memcpy (item->str, line, sizeof(item->str));
list _insert (head, item);
}
while ((item = list extract (head))) {
printf ("%s", item->str); free(item);

Such code is being rewritten over and over

The list must be reimplemented for each and every data item

struct str item { struct int item {
char str[l6]; int value;
struct str item *next; struct int item *next;

}; };
while (fgets(line, 16, stdin)) while (fgets(line, 16, stdin))
{ {

item = malloc(sizeof(*item)) ; item = malloc(sizeof(*item)) ;
memcpy (item->str, line, 16); item->value = atoi(line);
list insert (head, item); list insert (head, item) ;

} }

And double-linked lists are not so easy to write and rewrite

- Simple lists allow some operations, but are quite limited
* You really need something more to do stuff different from reversing

A possible solution: the generic list

struct generic list {
struct generic list *next;
vold *payload;

}:

#define list insert(h, new) \

({ (new) ->next = (h); (h) = (new);})
#define list_ extract (h) \
({struct generic list #*res = (h); if (h) (h) = (h)->next; res;})

The implementation above leads to the following code

while (fgets(line, 16, stdin)) {
item = malloc (sizeof (*item)) ;
item->payload = malloc(sizeof (1line)) ;
memcpy (item->payload, line, sizeof(line));
list insert(head, item);

}
We are used to separate the payload from the real work
« This approach allows to refine list management over time

- There is minimal effort in porting to a different payload
- The slightly extra work (alloc/free) is not expected to be a problem

Actual measures show the result is very bad

Modern systems feature a lot of tricks to be faster

- The average case is greatly improved
- But the worst case Is greatly worsened

The problem in this case is most likely cache memory

- Data access within the same cache line is almost free
but access to a different cache line is awfully expensive
* Here, the two allocations will often fall on different cache lines
- Every access to data requires two RAM accesses (with two cache miss)

The "generic” code shown is 20% slower than simple lists
- The measure is on the whole program, including I/O

Make it as simple as possible, not simpler

The real "simple" solution is going back to single allocations

- The individual allocation ensures better data locality
* Which in turn means less cache miss events, and more performance

But we need a basically different approach...

The approach taken in the kernel is reversing the structure

- Instead of including the payload in the list structure
the list structure is included in the payload itself

#include <linux/list.h>
struct list head {

struct list head *next, *prev;

};

static inline volid list add(struct list head *new, struct list head *head);

static inline void list add tail(struct list head *new, struct list head *head):;
static inline void list del (struct list head *entry):;

[* «oo. ¥/

The basic tool under this is "container_of"

#define offsetof (TYPE, MEMBER) ((size t) &((TYPE *)0) ->MEMBER)

#define container of (ptr, type, member) ({ N
const typeof(((type *)0) ->member) * mptr = (ptr):; N
(type *) ((char *)_ mptr - offsetof (type,member)):;})

container of

PS5 | of fsetof struct list head

| payload |
ad payloa

Koad paylq

ad payluai

Fload paylg
ayload pa;
I payload
ad payloa
fload payl-l

Klist performance is the same as trivial lists

time (seconds)

6‘ conversion
allocation
5_ tornado
:fawnnin
4_
3_
2_
1_
0
intlist glist-int stringlist glist-string klist-int klist-string

« A double-linked list is as efficient as the single-linked one

- A data structure can be in several lists at the same time

« Cache locality is warranted

- The code offers many more goodies, like "list for each(list)"

The sorting problem: trivial trees

int tt insert (struct node *tree, char *s)

{

struct node *new, **nextp;
if (strcmp(tree->s, s) > 0) {
if (tree->left)
return tt insert(tree->left, s);
else
nextp = &tree->left;
} else {
if (tree->right)
return tt insert(tree->right, s);
else
nextp = &tree->right;
}
new = calloc(l, sizeof (*new)) ;
if (!new)
return -1;
strcpy (new->s, s);
*nextp = new;
return 0;

Like trivial lists, trivial trees are often rewritten

struct node {
char s [SLEN];
struct node *left;
struct node *right;

Trivial trees, actually, are not up to the task

Unlikely trivial lists, a trivial tree is rarely acceptable

« It suffers horribly from being unbalanced
» Search time degenerates from O(log n) to O(n)
* Thus, it is not suitable for real use, not even in small environments

Balanced trees are not sth you can master in half an hour
- To make things worse, there are several implementations

RB trees, almost balanced (Bayer, 1972)

» Nodes are either red or black

» Children of red nodes must be black
 All root-to-leaf paths have the same number of black nodes

g ®

N o

Image: Colin M.L. Burnett (Cburnett), CC-BY-SA-3.0-unported

RB trees in the kernel (Arcangeli, 1999)

Kernel rbtrees go inside the payload, like lists

static void insert line(struct line rb *item,
struct rb root *root)

struct rb node **p = &root->rb node;
struct rb node *parent = NULL;
struct line rb *1rb;

while (*p)
{
parent = *p;
lrb = rb_entry(parent, struct line rb,

if (strcocmp(item->line, lrb->line) < 0)
p = &(*p) ->rb_left;

else
p = &(*p) ->rb right;

rb link node(&item->rb, parent, p):;
rb insert color(&item->rb, root):

rb) ;

struct line rb {

char line[SLEN] ;
struct rb node rb;

The code is split between .h and .c files

Rebalancing and a few more operations are library functions

« There is a little more work involved in porting to user space
* The implementation is very efficient, both In size and speed
- The suggested traversal of the tree is iterative, not recursive

rudo$ nm --size-sort linux rbtree.o

00000021 T rb first
00000021 T rb last
00000042 T rb next
00000042 T rb prev
00000054 T rb_replace node
0000006d £t rb rotate left

0000006d £t _ rb rotate right
000000eb T rb insert color
000002c9 T rb erase

A sorting program built with linux-rbtree is
- Almost as fast as /usr/bin/sort
- Comparable with trivial-tree on random data
- Slower than gsort, but data is always sorted during operation

Reusing Linux rbtree outside Linux

You may re-use this rbtree implementation in practice
- For example, to implement malloc

A malloc implementation with rbtree is small
« It is also reasonably fast and scales well

Surprisingly, a first-fit implementation is faster
if the number of blocks is not exceedingly large

And we are back the Pike's programming rules:

- Rule 1. You can't know where a program is spending its time.
* Rule 2. Always measure before you optimize.

* Rule 3. Fancy algorithms are slow when n is small, and n is usually small.

Other goodies and final considerations

The two structures shown are just examples

* In the headers and in lib/ there are more structures
hash tables (several flavours)
other kinds of trees
other flavours of lists
checksumming algorithms
decompression of the various kinds

The implementation is very high quality, in all cases
The code is self-contained and very easy to reuse
It's very good code for teaching programming as well

