Interrupts




Interrupts and CPU Types

All CPU types provide some sort of interrupt

« It usually is an electrical signal reaching the CPU
- Sometimes (e.g. 8086) there is one wire and one protocol
- More often there are multiplexing registers
You have a single interrupt entry point
Then a status register tells which one is active
Possibly a second level register details more
- Nowadays we have MSI too: Message Signalled Interrupts
They exist in PCI, to simpliy hardware routing
They are the preferrerd IRQ form in PCI Express

Most simple firmware code bases use no interrupt at all

- They rely on cooperative multitasking
« Or they are just a "while(1)"” loop calling some action



Interrupts and Traps

Interrupt, Trap, Abort, System Call, Breakpoint, ...
- All of these are basically the same:
Normal program execution is interrupted,
Interrupts are disabled and CPU state changes
Execution resumes at a differerent location
You need some special instruction to "return”

Usually, we call "Interrupt Request” (IRQ) something external

- A device driver requires attention
« A timer expired
- A network or USB frame arrived

And we call "Trap” sth that depends on the program flow

« lllegal Instruction
* Division by zero
« lllegal pointer

Software interrupts are just the same
- Special instructions that force a state change in the CPU



Interrupts in ARM

The ARM architecture has a special approach to traps

- The CPU jumps to a specific address (0..0x1c)

- The CPU changes its interanl "mode”

- Some registers are swapped to a different "bank"”
» The PC is set to the "vector'" address (0x00..0x1c)

Thus, no automatic memory access is perfomed

b reset

1dr pc, _undefined i1nstruction
1dr pc, _software interrupt
1dr pc, _prefetch abort

1dr pc, _data abort

1dr pc, _not used

1dr pc, _1irqg

1dr pc, _fiqg

This approach simplifies hardware but makes software not trivial
* Not a problem, usually, when you code this once only



Interrupts in Cortex-MO (LPC11)

The NVIC (Nested Interrupt Controller) is part of Cortex-MO

« It is a peripheral device like times and /O ports
« But ARM includes it in the processor definition
» The reset/interrupt mechanism is highly coupled with it

At address 0, we find the interrupt vectors
- They are vectors (pointers), not instructions
The CPU pushes processor state to the stack
It then fetches the vector to the program counter
What happen is similar to a function call

16 Core vectors
« 0: initial stack pointer
* 1: reset vector
« 2..15: more predefined traps

32 (or 64) SoC-specific vectors

« LPC1135 and similar ones use 32 vectors
- They are internal timers and peripheral devices

See chapters 6 and 24.3 of the uC manual (it's committed)



Interrupts and Tasks

Usually, timer interrupts are used for preemption

* For example, both RM and EDF rely on preemption

* In the simplest implementation, you fire a periodic timer
Every time the timer ticks, you make a scheduling choice
The NVIC even includes it's own "system tick” IRQ

- Unfortunately, a periodic interrupt is a waste of CPU time
20us every ms is 2% of CPU power
With a slower clock, it can even be much worse
You can't raise your HZ if you interrupt at every tick

* Linux deprecates the periodic interrupt since at at least 2011

And preemption brings in semaphores, spin locks, and more

Device interrupts are used to restarted a stopped task

- An interactive shell waiting for the serial port
- An SPI data transfer waiting for a reply

But this creates the need for timeouts and recovery



Bare-Metal support for Interrupts

As usual, the designer faces a choice. Options are:

* No interrupts
Single-task or cooperative multi-tasking
Easiest and safe approach
Allows jitterless operation, if well done
Doesn't scale up to complex situations

» Single-interrupt system
The critical "task” is jitterless (the rest is not)
The rest of the system works as before
You can manage a lockless protocol for data-sharing

 Full peripheral interrupts
UART, SPI, timers, gpio, ...

- System tick alone
With polling I/0 in each task

« Full preemption and interrupt-driven stuff
Like a desktop/server system



Some Considerations

No-interrupts systems are very simple to debug

- We already have a time base without interrupts
If the uC allows: see the AVR port
* Don't underestimate the joy of lockless code

Single-interrupt systems allow precise data collection

- You don't need to care much about printf/USB latencies
« Still, the overhead of irq enter/exit can be high

The scheduler can introduce substantial overhead
A few microseconds or more

Device interrupts can destroy your well-determined WCET

When you introduce priorities, you face all kinds of problems

» Deadlocks
* Priority inversion
- Stale tasks



A lockless circular buffer

Most, but not all, single-interrupt systems collect or emit
data with a predefined rate

You usually need a circular buffer for your data items

The trivial implementation uses head+tail pointers or offsets
- But when head == tail, is the buffer full or empty?
« And how can you detect overflows and underflows?

Usually, people uses a mutex primitive to access head and tail

But we can do better. A lockless circular buffer is possible
 Please think about the problem and offer a solution



Splitting interrupt handlers

"Real” operating system had to face the IRQ mess

- problem "S": the CPU can serve a single interrupt at a time
- problem "P": interrupts disrupt predictable (and RT) reponse

The first approach is splitting the interrupt handling

« A "top half” handler does thevery minimum stuff

It communicates with hardware, and acknowledges the interrupt
« A "bottom half" handler deals with OS data structures

This happens with interrupts enabled

IRQ (irg disabled in CPU)
bottom half (irg enabled) / \
process context (enabled) / \

This mitigates problem S above, but not problem P

- And the bottom half still cannot sleep or schedule
« It runs in a privileged context, where the process is stalled



Threaded Interrupts

To make RT predictable again we can downgrade interrupts

« If the interrupt is a thread (a process) it can be scheduled
* And it can be prioritized above or below normal tasks

https://lwn.net/Articles/302043/ (a.d. 2008)

It's simpler done than said

« The top half disables the interrupt and awakes the IRQ thread
» The IRQ thread (process) serves the interrupt and enables it again

This means your top-priority task as a predictable WCET
« It is it's real (cpu-intensive) WCET
* Plus one interrupt time (1-2 us) for each device

Network bursts or other massive I/O won't interfere any more



