The GPIO subsystem (uC)

The GPIO pins

All microcontrollers have GPIO pins

« GPIO means "General Purpose Input/Output”
- Some manufacturers call them just PIO or Parallel I/O
- Sometimes their are called I/O pins

They are usually divided in groups, called "ports”™
- Ports are of varying width
AVR has 8-bit ports (it's an 8-bit CPU)
Some Cortex-M has 12-bit ports
Most have 16-bit or 32-bit ports
* Not all bits can be instantiated
Sometimes ports may have as few as 0 useful bits
Fortunately, vendors use proper "sparse” nhames

If you use the concept of ports, they *must* be 32b wide

- We have so many nhumbers in one integer
- Portability is paramount

Alternate Functions

Most GPIO pins have alternate functions

« Each pin has one or several predefined uses

PWM, UART, SPI, 12C, ...
- Most pins are part of the GPIO subsystem
- Usually, high-speed signals (e.g. USB) live on dedicated pins

When using GPIO, programs should be portable

- We need an API that always works.
« The same program should build and work everywhere
» The code should never refer to CPU specifics

When using alternate functions, it's a matter of the driver

- The driver (UART, SPI, whatever) is machine specific, so it can know the AF
- Still, we want a consistent API offered by the GPIO API

When offering and alternate function API, GPIO must be 0
« Portability is paramount

Electrically

Every user manual describes the electrical GPIO

« All of them have input and output modes
- Some can feature pull-up and/or pull-down
- Some can have a open-drain mode

Examples (LPC11 and ATmega):

Cidite-Oirain a1 e J
..... q F

g Configurad Sl aianke _l—ﬂl—“.. al]
2 cligial ciiiput — psb-up

driwar dala culpit Iﬂ ' - — -

jl wd W —

l: q

- Vs NESET i

N ;J__”::'

L} = r .
[+ < e
NESET L
Wia
mna
13
-
g

Still, we want a unified API

GPIO pins are everywhere

Microcontroller ports are only part of the game

* You have GPIO extenders over I12C
» Most peripheral chips offer some GPIO pin
- You can have a remote controller, behind pci/usb/whatever

We need a flexible API that can be extended over time

Vendors solutions are not "usually™ up to the task

- They only offer register names
"IOSET1 = n"
« Or they offer structures

"GPIOC->IDR"
* I'm ready to apologize if you show me good vendor code

The Linux approach grew too complex over time
« It can't be replicated in the microcontroller world

So, this is the API we are going to use

No specific header to include
- The gpio header is included by default by cpu.h

GPIO _NR (port, bit)
GPIO_FORT (nr)
GPIO_BIT (nr)

extern void gpioc _init (void) ;

extern int gpio dir af (int gpio, int output, int wvalue, int afnum) ;
extern void gpio dir(int gpio, int output, int wvalue) ;

extern int gplio get(int gpio) ;

extern uint32 t _ gpio get(int gpio);

extern void gpio set(int gpio, int wvalue) ;

extern void _ gpioc set(int gpio, uint32_t wvalue);

Then, there are constants to help the caller
- GPIO_DIR_IN, GPIO_DIR_OUT, ...

Initialization can be slow (who cares)

Runtime may need to be fast
- Sometimes, the program may directly act on registers

And now the homework

Please read my headers and C files (include/gpio* and lib/gpio®)

- Understand what they do
« Learn from what is good
« Complain about what is bad

Suggest changes to the APl to make it better

