The ARM processor

ARM - Acorn Risc Machine

ARM is a RISC processor with the following features

- Load-store architecture

- 16 registers, each 32-bits wide

» Three-operand instructions, 32-bits wide

- At each clock cycle a new instruction is issued
- Low energy consumption (W/MIPS)

It is desighed by ARM Ltd. and licensed to manufacturers
- ARM7: nommu, very widespread as a microcontroller
« StrongARM: DEC, then Intel (hnow dead)
» Xscale: Intel, then Marvell (80200, PXA255, PXA270, IXP425, ...)
« EP93xx: Cirrus Logic (es: 9302, 9315)
« IMX: Freescale (iMX1, iMX21, iMX27, iIMX31, iMX51)
- AT91: Atmel
* ... many more ...

http://en.wikipedia.org/wiki’/ARM _architecture

ARM Machine Code

Major features of the ARM machine code

« Unaligned access is not allowed (like all RISC)

* No assignment of 32-bit constants is possible (like all RISC)
- There is no hardware-managed stack pointer (like all RISC)
« Load-multiple and store-multiple instructions

« Every instruction is conditionally executed

- The status bits are modified only optionally

- One operand can be shifted at no cost

- All addressing is register-relative

Other features typical of RISC processors, but missing in ARM:
- Register windows
» «Delay slot» for jumps
- Zero register

ARM Registers (32-bit)

;? usable in user mode
e
r3 systemn modes only
r4
IS
r
il _
6 i=: f!x:l
r s f_lg_
L
r11 SN : I
r M2 fig = T F13 irg r13 und

— : 13 swcfp————— - r14 und
r13 08 figf—-=—=2q r4 et r14_irg d
r14 14 fig| =
r15 (FPC)

- ' — SPSR_und
l =SEPSE Ir =
- SPER_abt —sieai 11
CF‘SFL SF‘SHJ:ICI]] =
q fig SV abort g undefined

User mode moce M Ocle moce mocle moce

1996 Addizon Wesley Longman

How can we work without a hardware-defined stack?

» Using the link register (R14) for function calls
- Using banked registers for interrupt management

The Standard ABI, Coprocessors

r0
rl
r2
r3
r4
r5
r6
r'/
r8
r9
rlo0
rll
rl2
rl3
rl4
rlh

al
a2
a3
a4
vl
v2
v3
v4
v5
v6
v/
v8
ip
SP
lr
pcC

Role of registers

- A registers are function arguments (caller-saved)
- V registers are callee-saved

* R12 is the "intra-procedure scratch”

* R13 is the stack pointer

* R14 is the link register

* R15 is the program counter

Coprocessors

- The architecture defines 16 coprocessors
CP15, if present, is used for cache and MMU
CPO0 and CP1, if present, are used for FPU

* The following instructions are defined by the architecture:
Register move CPU/coprocessor: MRC, MCR
Coprocessor load and store: LDC, STC
Coprocessor data processing: CDP

The Thumb Extension (ARM7 = ARMv4)

Thumb instructions are 16-bits wide

The idea is to "expand” instructions on the fly

Pro: It took very little logic in the core

Pro: Code is much more compact

Con: Only a subset of the registers can be accessed

Con: 2-operand operations (ARM has 3-operand ops)

Con: No conditional ops nor some other interesting features

BX and BLX (branch (and link) and exchange) switch mode

15 13121110 5 7 a
oot |10 Rd FHimma
ahways
candition \ A J A Pl J
major opoods, . L
R P— mnﬂr_-:.p:-:-:.’e dastination e T
CWP /30D /5 1E denoting 210 and scurce shift valua
o ; Eesat G5 ragistar
with immediata
| I ‘J
2 R T T i
31 2B P75 RrR 2120149 1515 1211 a
1110|001 ({0100 (1] 0 Rd 0 Rd npooan #Hmma

B [255 Addiven Weyley Tongan

ARM/Thumb interoperability

Since ARM7T, we have two possible operating modes

« The "T" bit is part of the processor status register
» To set (or clear) it we jJump to an odd (even) address.
- Bit 0 of the program counter is thus used as a selector

Not all instructions are available in Thumb mode

« In particular, no special instruction to access banked registers
« Also, interrupt (and (trap) management starts in ARM mode
This is needed for compatibility with existing code

The vast majority of UC developers chose Thumb

- There is a little performance penalty, but that's ok
- What is limited (and costly), in microcontrollers, is memory

As a matter of facts, this is what happened in the user base

- The vast majority of code was built in Thumb mode
« Only some OS procedures (and IRQ entry/exit) used ARM mode

The Thumb-2 Instruction Set

The "Cortex” (ARMv7) family introduced Thumb-2

« It is a separate instruction decoder, not a decompressor any more
« It is an extension of the previous Thumb machine code

« It can access all registers

« All core features can be accessed

* New ITE instruction (if then else),

ARM defined a Unified Assembler Language

* You can build the same source as ARM or Thumb instructions
The idea saves a lot of conditionals and unmaintained code
Unfortunately, it is not trivial

It is now possible to build Thumb-only devices

- Cortex-A (application processor) has both ARM and Thumb2
- Cortex-M (microcontroller) only includes a Thumb2 decoder

This also required a change in the IRQ vectors
- Not a problem when making incompatible changes anyways

